Серийное производство кремниевых выпрямительных высокочастотных быстровосстанавливающихся диодов налажено на заводе АО «Оптрон-Ставрополь». Первые партии продукции уже поступили заказчикам.
На сегодняшний день завод «Оптрон» является единственным в России предприятием, выпускающим роторные кремниевые выпрямительные диоды, отвечающие категории качества ВП (приёмка товара осуществляется военным представительством).
В 2019 году завод расширил ассортимент продукции: в линейке силовых полупроводниковых приборов появились ещё и кремниевые выпрямительные высокочастотные быстровосстанавливающие диоды на токи от 50А до 150А. Такой тип полупроводников используется при производстве инверторных сварочных аппаратов и выпрямителей.
АО «Оптрон-Ставрополь» специализируется на производстве силовых полупроводниковых приборов. Выпускаемая продукция применяется для преобразования и регулирования электрической энергии в разных отраслях промышленности: атомной энергетике, нефтегазовом оборудовании, медицинской технике, системах электропривода, системах управления, робототехнике и др.
Российские ученые на основе перовскитоподобного комплексного бромида сурьмы создали инновационный полупроводниковый материал для солнечных батарей. Его появление не только увеличит эффективность устройства, но и снизит токсичность производства.
Сегодня многие специалисты пытаются найти аналоги солнечным батареям, основу которых составляют комплексные галогениды свинца. Ключевым отличием таких элементов является простота изготовления, низкая стоимость и высокая эффективность преобразования света. Однако существует и значимый недостаток, который заключается в токсичности производства. Дело в том, что нестабильные галогениды свинца необходимо соединять, с йодом, фтором, бромом и хлором, а это делает аккумуляторы опасными в использовании.
Российские учёные из Московского физико-технического института (МФТИ) в городе Долгопрудном Московской области сделали открытие, кардинально меняющее представление о построении светоизлучающих устройств. Они смогли обнаружить, что один из используемых при создании лазеров и светодиодов эффектов может работать в «чистых» полупроводниках, что ранее считалось невозможным, говорится в научном журнале Semiconductor Science and Technology.
Речь идёт об эффекте суперинжекции, для достижения которой, по мнению учёных, достаточно использовать лишь один полупроводник.
Специалисты Сибирского физико-технического института (СФТИ) ТГУ первыми в мире вырастили сверхтонкие пленки из органических молекул в газовой среде. Такая пленка в 5 тысяч раз тоньше человеческого волоса, благодаря чему появилась возможность создавать полупроводниковые устройства, уникальные по своим характеристикам.
Как рассказали в пресс-службе вуза, основу таких полупроводников отличают не только размер, но и быстродействие, а также низкое потребление энергии. Новые материалы предназначены для производства наноэлектроники, а для их создания томичи использовали единственную в своем роде установку молекулярно-послойной эпитаксии.
— Промышленная установка для выращивания полупроводников из молекул органических соединений была сконструирована сотрудником нашей лаборатории и Университета штата Юта Владимиром Буртманом и собрана по заказу ТГУ в Израиле. Установка позволяет добиться такого расположения молекул на подложке, которое недоступно при любом другом способе создания тонких пленок, — отмечает руководитель лаборатории органической электроники СФТИ ТГУ Татьяна Копылова.
Национальный исследовательский технологический университет «МИСиС» разработал новый тип силовых диодов с оптимизированной кремниевой структурой. Получены экспериментальные образцы с характеристиками превышающими импортные аналоги. Разработана технология промышленного получения новых полупроводников, которая может быть применена при производстве кремниевых биполярных приборов и интегральных схем. Внедрение технологии в полупроводниковое производство позволит существенно повысить качество целого сегмента отечественной электронной компонентной базы, что будет способствовать дальнейшему движению к технологической независимости по программе замещения импорта.
Холдинг «Росэлектроника» и Nedi Technology, входящая в состав крупнейшей китайской корпорации в сфере радиоэлектронных технологий China Electronics Technology Corporation (CETC), подписали соглашение об организации контрактного производства полупроводниковых приборов.
Новосибирские физики разработали более десятка новых материалов и технологий в области уникальных трехмерных наноструктур. Об этом сообщает издание сибирского отделения РАН «Наука в Сибири».
Ученые из Томского государственного университета научились выращивать полупроводники из органических молекул принципиально новым методом — самосборки из газовой фазы. Сверхтонкие пленочные структуры толщиной в несколько десятков молекул позволяют создавать полупроводники с улучшенными характеристиками для использования в устройствах нано и микроэлектроники.
В ТГУ отмечают, что разработанная технология выращивания органических полупроводников, позволит устранить одну из главных проблем молекулярной электроники и наноэлектроники. Она заключается в том, что все устройства, сделанные на основе органических проводящих материалов, разлагаются под воздействием времени, нагрузок и температуры. Новая технология послойного выращивания позволяет формировать очень прочные связи между молекулами, что значительно продлит срок работы устройств.
Ученые из Томского государственного университета научились выращивать полупроводники из органических молекул принципиально новым методом — самосборки из газовой фазы. Сверхтонкие пленочные структуры толщиной в несколько десятков молекул позволяют создавать полупроводники с улучшенными характеристиками для использования в устройствах нано и микроэлектроники. В ТГУ отмечают, что разработанная технология выращивания органических полупроводников, позволит устранить одну из главных проблем молекулярной электроники и наноэлектроники. Она заключается в том, что все устройства, сделанные на основе органических проводящих материалов, разлагаются под воздействием времени, нагрузок и температуры.
Холдинг «Росэлектроника» Госкорпорации Ростех освоил выпуск
варикапов, способных заместить импортные изделия, использующиеся
в российской радиоэлектронной аппаратуре.
Варикапы — полупроводниковые диоды, работа которых основана на зависимости ёмкости p-n-перехода от обратного напряжения.
Применяются в качестве элементов с электрически управляемой
ёмкостью в схемах перестройки частоты колебательного контура в частотноизбирательных цепях, деления и умножения частоты,
частотной модуляции, управляемых фазовращателей.
Изделия разработаны входящим в холдинг НИИ полупроводниковых
приборов. По своим электрическим параметрам (емкость, коэффициент
перекрытия) они не уступают зарубежным аналогам, а по некоторым
характеристикам превосходят их. В частности, российские
арсенид-галлиевые приборы имеют лучшие характеристики по добротности: ее значение достигает 1000 и более на частоте 50
МГц.
Новосибирскими физиками из Института физики полупроводников им.
А.В. Ржанова СО РАН разработан новый стандарт измерения
нановысоты — идеально гладкой поверхности.
Ядерщики Томского политеха, часть 2: кремний и топазы
Ученые лаборатории № 33 Томского
политехнического университета (ТПУ) с помощью единственного
за Уралом ядерного исследовательского реактора облучают 2% от мирового объема нейтронного легированного кремния, без которого
невозможно сделать ни один электроприбор. Кроме того, ученые
разрабатывают технологию окраски в небесно-голубые цвета топазов,
которые так популярны у женщин.
Всему голова
«Полупроводниковый кремний — это основа всех приборов,
существующих в мире. Фотоаппараты, компьютеры — все делается на основе этого материала. Без него невозможно современное развитие
техники», - рассказывает заведующий лабораторией № 33
Физико-технического института ТПУ, кандидат технических наук
Валерий Варлачев.
Компания ООО «Крокус Наноэлектроника» (КНЭ) — созданное в 2011
году совместное предприятие Crocus Technology, ведущего
разработчика технологии полупроводников, усовершенствованной за
счет магнитных элементов, и ОАО «РОСНАНО», которое содействует
реализации государственной политики по развитию наноиндустрии в
Российской Федерации, сообщает об успешном прохождении
сертификации своих чистых комнат, расположенных в Москве (Россия)
в соответствии с требованиями ISO 14644–1.
Чистые комнаты на производственных площадях сертифицированы по
самому современному классу — 1000 (ISO 6). Теперь эти чистые
комнаты готовы к размещению оборудования и являются сердцем
первого в России завода по изготовлению микросхем на пластинах
диаметром 300мм, производительность которого составит до 1000
пластин в неделю.
«Сертификация наших чистых комнат — очень важная веха в
подготовке завода. Мы надеемся подключить оборудование чистых
комнат к инфраструктуре завода в следующем квартале и начать
процесс квалификации оборудования завода в сентябре 2014 года.
Достижение этой вехи произошло также благодаря нашему
генеральному подрядчику — компании Faeth, которая закончила
работы по инфраструктуре завода и чистым комнатам, а также
получила контракт на проведение работ по подключению оборудования
к инфраструктуре завода» — сообщил Марк Дидик, Генеральный
директор КНЭ.
Специалисты Томского института
сильноточной электроники СО РАН разработали уникальную
установку, которая позволяет получать полупроводники и
металлические материалы с качественно новыми свойствами для
микроэлектроники. Установка создана для Польского ядерного
центра.
У установки нет аналогов в мире. В ней совмещены сразу две
возможности – имплантации материалов многозарядными ионами и
исправления возникающих при этом дефектов, с помощью импульсного
сильноточного электронного пучка. Оборудование предназначено для
получения полупроводниковых и металлических материалов с
качественно новыми свойствами, которые будут использоваться в
области микроэлектроники и приборостроения.
Профессор Национального центра ядерных исследований Польши
Збигнев Вернер отметил, что польская сторона уже имела успешный
опыт сотрудничества с томскими коллегами.
Завод полупроводниковых
приборов ( г. Йошкар-Ола.входит в холдинг
«Росэлектроника» госкорпорации «Ростех» ) запустил на своем
производстве новую линию литья керамической ленты, которые
применяется при изготовлении корпусов для всех типов интегральных
микросхем, используемых в отечественной электронике, в том числе
военного назначения.
Технические возможности новой линии Завода полупроводниковых
приборов позволят получать пленки толщиной менее 300 мкм, которые
необходимы для разработки и освоения современных сложны корпусов
для интегральных микросхем с числом выводов
более 250 и шагом выводов менее 0,5 мм, а также миниатюрных
безвыходных корпусов типа LCC.
Потребности рынка в таких изделиях постоянно растут и составляют
на сегодняшний день в денежном выражении порядка 200 млн рублей
для миниатюрных корпусов типа LCC и более 50 млн рублей для
сложных многовыводных корпусов.
Ученые ИЯФ создали систему нагрева для
термоядерногореактора
Сотрудники новосибирского
Института ядерной физики (ИЯФ) СО РАН создали опытный образец
инжектора для термоядерного реактора.
Как рассказал замдиректора
института Александр Иванов, сотрудники ИЯФа построили стенд для
разработки мощных инжекторов нейтральных пучков, по сути это
опытный образец системы нагрева плазмы для термоядерных
реакторов. «Я бы сказал, что наш институт является мировым
лидером в создании этих систем», — отметил г-н Иванов.
В Институте физики
полупроводников им. А.В. Ржанова Сибирского отделения РАН
разработали технологию получения фоточувствительного материала в
виде пленочных структур твердых растворов соединения теллурида
кадмия и ртути (КРТ), которые предназначены для производства
инфракрасных прицелов и систем наблюдения нового
поколения.
В
Институте физики полупроводников научились получать КРТ в виде
сложных пленочных структур толщиной от долей микрона до 10-15
микрон новым высоко технологичным методом молекулярно-лучевой
эпитаксии - ориентированного роста одного кристалла на
поверхности другого.
«Мы
можем получать такие пленочные структуры со слоями различных
составов КРТ, которые чувствительны к излучению в различных
областях инфракрасного спектра. Это позволяет, в отличие от
объемного материала, использовавшегося до сих пор, создать
многоспектральные фотоприемники, получить гораздо более полную и
достоверную информацию об интересующем объекте», - сообщил
ИТАР-ТАСС руководитель группы разработчиков Сергей
Дворецкий.
В
результате конструкции инфракрасных устройств будут проще, в
несколько раз уменьшатся их габариты, электропотребление и
стоимость. Применение пленочных структур КРТ позволит разработать
и производить широкий спектр инфракрасной техники, которой можно
обеспечить практически каждого солдата, не говоря уж о самолетах,
танках и другой технике.
Кроме того, одно из преимуществ таких структур перед объемными
кристаллами заключается практически в 100-процентном
использовании материала при изготовления инфракрасных приборов. В
случае же объемных кристаллов КРТ только 1% ценного исходного
сырья используется при изготовлении приборов, а остальные 99%
уходят в отходы.
Технология ученых ТГУ стала основой проекта по организации серийного производства уникального оборудования: портативной рентгеновской аппаратуры нового типа
Агентство стратегических инициатив (Москва) приняло решение поддержать проект «Детекторы и рентгеновские аппараты: создание инновационного производства арсенид-галлиевых полупроводниковых детекторов цифрового цветового изображения и мобильных рентгеновских аппаратов нового поколения на их основе». Задачей проекта станет организация производства и вывод на мировой рынок наукоемкой конкурентоспособной продукции нового поколения в области цифровой радиографии, основанной на уникальных отечественных технологиях. Общая стоимость проекта – 880 млн. рублей.
- На мировом рынке сейчас 80% детекторов поставляет японская фирма «Хамамацу», и в них каждый квант регистрируется с помощью сцинтилляторов – то есть кванты поглощаются и преобразовываются в световой импульс, а уже фотоприемники преобразуют их дальше в импульсы тока. Но мы знаем, что свет распространяется во все стороны, поэтому у таких детекторов низкий КПД – всего 7-8%, - рассказывает автор проекта Олег Толбанов, профессор ТГУ, руководитель Научно-образовательного центра «Физика и электроника сложных полупроводников». - Наши детекторы преобразовывают энергию каждого кванта в импульсы электрического тока, а затем специальными электронными чипами считают эти импульсы. В итоге эффективность сбора заряда (КПД) достигает 95%.