• Новосибирские физики разработали новое покрытие для мемристоров. Это полупроводники, на основе которых создают компьютеры будущего, по принципу работы схожие с человеческим мозгом.

    «Эти подложки можно сгибать, что мы и делали при изучении структур. В таком состоянии сохраняется работоспособность». Простейшие микросхемы можно напечатать не то, что на пластмассе, но и на обычной бумаге. Главное — специальные чернила, у которых очень сложная структура.

    «Если обрабатываем все это фтором, то получается прозрачный раствор — фторированный графен. Смешивая его с наночастицами оксида ванадия, получаем композитный материал, который наносится с помощью 2D-принтера на различные подложки — твердые, гибкие», — рассказал аспирант института физики полупроводников им. А. В. Ржанова Артем.

    читать дальше

  •  © scx2.b-cdn.net

    Ученые Института физики полупроводников им. А.В. Ржанова (ИФП СО РАН) создали новый композитный материал, подходящий для создания гибких элементов памяти, сообщает научный институт во вторник.

    читать дальше

  • Фармакологическая компания Bright Way запустит в 2020 году в Кургане цех по производству уникального препарата против язвы желудка, разработанного учеными новосибирского Института химии твердого тела и механохимии (ИХТТМ СО РАН). Мощность предприятия составит 30-50 тыс. т лекарств в год.

    Сотрудники Института разработали метод синтеза лекарственной субстанции для лечения язвы желудка на основе металла висмута. Лекарство по своим параметрам гораздо лучше зарубежных аналогов по побочным действиям для пациента. Испытания препарата прошли около пяти лет назад. После чего на него вышла компания Bright Way, с которой мы заключили соглашение о передаче патента на производство лекарственной субстанции. Мы примем участие в организации цеха по производству этого лекарства, который будет построен в 2020 году.

    Строительство объекта начнется в 2019 году, мощность цеха составит 30-50 тыс. т лекарств в год.

    В рамках соглашения мы отработали массу технологических стадий для производства лекарства. В дальнейшем мы будем вести переговоры с Bright Way о расширении линейки препаратов. Мы планируем запустить в производство лекарства против кожных заболеваний, против диареи.

    Московская компания Bright Way зарегистрирована в 2016 году. Организация имеет четыре дочерних компании. Основным видом деятельности компании является производство и оптовая торговля фармацевтической продукцией.

  •  © phototass1.cdnvideo.ru

    Российские ученые в рамках совместного проекта разработали технологию, которая позволит укрепить автомобильные дороги одним из наиболее прочных и износостойких материалов в мире — сверхвысокомолекулярным полиэтиленом. Сейчас полимер используется для протезирования суставов, изготовления бронежилетов, деталей ракет и самолетов.

    Применение сверхвысокомолекулярного полиэтилена в настоящее время ограничено сложным процессом его переработки в готовые изделия. Однако ученым из Новосибирского института органической химии им. Н.Н. Ворожцова (НИОХ СО РАН) удалось упростить технологию его создания настолько, что подешевевший материал можно будет использовать для укрепления автодорог.

    читать дальше

  •  © phototass3.cdnvideo.ru

    Ученые Института ядерной физики Сибирского отделения РАН (ИЯФ СО РАН) разработали и изготовили новый детектор рентгеновского излучения для исследований воздействия потоков плазмы на материал на мегасайенс установке — синхротроне СКИФ, который строится под Новосибирском. Улучшенный детектор позволит значительно ускорить и упростить процесс получения и обработки данных, говорится в сообщении, распространенном в среду пресс-службой института.

    Для экспериментов по изучению воздействия тепловых нагрузок [прежде всего, воздействие потоков плазмы на материал] интервал между кадрами, которые делает детектор, должен составлять 10 микросекунд, <…> от него требуется очень высокая чувствительность. Мы разработали специальный детектор, <…> он [способен регистрировать] практически каждый пролетающий фотон и по этому показателю превосходит предшественника в 10 раз.

    читать дальше

  •  © phototass3.cdnvideo.ru

    Уникальную установку «Комплекс» для обработки и изменения функций поверхности изделий сконструировали ученые томского Института сильноточной электроники (ИСЭ) СО РАН. Изобретение поможет увеличить срок эксплуатации обработанных деталей в 3-6 раз.

    Ученые (ИСЭ) СО РАН совместно со специалистами компании «Пучково-плазменные технологии» разработали и представили проект уникальной установки «Комплекс». Ее свойства позволят конструировать и модифицировать поверхности изделий, и в едином вакуумном технологическом цикле выполнять функции нескольких установок.

    У большей части деталей срок службы на 70-80% зависит от свойств поверхности. «Комплекс» сможет увеличить прочность деталей, сделать их устойчивее к коррозии, покрыть наноматериалами и закалить.

    Таким образом, установка сможет увеличить срок эксплуатации изделий. Оборудованием уже заинтересовались компании, выпускающие инструменты и штампы.

  •  © morvesti.ru.images.1c-bitrix-cdn.ru

    Институт физики прочности и материаловедения СО РАН (Томск) и ЗАО «Чебоксарское предприятие «Сеспель», разработали технологию и оборудование для производства криогенных танк-контейнеров для перевозки сжиженного природного газа (СПГ), говорится в сообщении института.

    Такие контейнеры используются для мультимодальных (железнодорожным, автомобильным, морским и речным транспортом) перевозок СПГ. По данным института, доля импортных танк-контейнеров в российском парке достигает 70%.

    С использованием разработанных технологии и оборудования на базе предприятия «Сеспель» ведутся работы по организации крупномасштабного производства танк-контейнеров для СПГ. Плановая мощность производства — более 500 танк-контейнеров в год. Реализация проекта позволит обеспечить импортонезависимость России от поставок криогенных танк-контейнеров для хранения и перевозки сжиженного природного газа.

    •  © cdn25.img.ria.ru

    Ученые из Новосибирска нашли возможное объяснение многим странностям в том, как графен проводит электрический ток, изучая поведение и взаимодействие электронов внутри этого плоского материала. Их выводы были изложены в статье, опубликованной в журнале Physica E.

    Графен представляет собой одиночный слой атомов углерода, соединенных между собой структурой химических связей, напоминающих по своей геометрии структуру пчелиных сот. Константин Новоселов и Андрей Гейм, работающие в Великобритании выходцы из России, получили Нобелевскую премию 2010 года по физике за создание этого материала.Он обладает массой парадоксальных и уникальных свойств. К примеру, графен проводит электрический ток и тепло лучше, чем металлы, несмотря на его абсолютно малую толщину, невероятно прочен и прозрачен для видимого света, а также он обладает крайне необычными полупроводниковыми свойствами в комбинации с другими «плоскими» материалами.

    читать дальше

    • https://cdn24.img.ria.ru/images/155578/50/1555785010_394:0:4035:2048_600x0_80_0_0_7ffd7e033068d0e89b22b8d4e64797fa.jpg
    • https://cdn24.img.ria.ru/images/155578/50/1555785010_394:0:4035:2048_600x0_80_0_0_7ffd7e033068d0e89b22b8d4e64797fa.jpg
    •  © cdn24.img.ria.ru

    Ученые Сибирского федерального университета (СФУ) и Института физики имени Л.В. Киренского СО РАН создали самоорганизующийся шаблон из кремнезёма для прозрачных электродов на гибкой подложке, эффективный при разработке современных гибких дисплеев и светодиодов. Статья об исследованииопубликована в «Technical Physics Letters». В последнее время ученые уделяют большое внимание прозрачным электродам на гибком полимерном носителе, так как они могут применяться для изготовления гибкой электроники, органических и гибридных солнечных элементов, а также неорганических (LED) и органических светодиодов (OLED).Исследователи из СФУ и Института физики имени Л.В. Киренского СО РАН создали самоорганизующийся шаблон, который может быть использован для создания гибких дисплеев и источников света, а также распределенных нагревателей, в которых требуются гибкие прозрачные проводящие покрытия.

    читать дальше

    •  © screenshotscdn.firefoxusercontent.com

    Четыре новые лаборатории созданы в Институте катализа (ИК) им. Г. К. Борескова Сибирского отделения Российской академии наук (СО РАН). Лаборатории занимаются изучением синхротронного излучения, катализаторов нефтепереработки, переработки ископаемого и растительного сырья, а также фото- и электрокатализа. Ещё две лаборатории созданы в Институте физики полупроводников (ИФП) им. А. В. Ржанова СО РАН, которые займутся нанотехнологиями и оптическим измерением объектов небольших размеров.

    Национальный проект «Наука» предполагает, что к 2024 году Россия войдёт в пятёрку ведущих стран мира, осуществляющих научные исследования и разработки. В бюджет нацпроекта заложено 636 млрд рублей. До 2024 года будет обновлено 50% всей приборной базы, более половины научных сотрудников будут составлять молодые специалисты в возрасте до 39 лет. Всего таких лабораторий в России к этому времени будет создано около 900.

    читать дальше

  • ©Видео с youtube.com/ https://www.youtube.com/embed/eLnbiG7_94g

    Новосибирские ученые работают над созданием ракетного двигателя нового поколения для полетов на Марс. Сегодня в Институте ядерной физики начали серию экспериментов на новейшей установке СМОЛА. Ее только-только запустили. Аналогов нет ни в России, ни в мире.

    Первые испытания уже прошли успешно.

    читать дальше

  • Разработанное в новосибирском Национальном медицинском исследовательском центре имени академика Е.Н. Мешалкина искусственное сердце на основе дискового насоса успешно прошло первые тесты, сообщил представитель учреждения.

    Специалисты вышли на этап доклинических испытаний, в ходе которых состоялись первые «острые» эксперименты на крупных лабораторных животных — мини-пигах.

    читать дальше

    • Инжектор, разработанный и изготовленный по заказу ТАЕ
    • Инжектор, разработанный и изготовленный по заказу ТАЕ
    •  © sbras.info

    В Институте ядерной физики им. Г.И. Будкера СО РАН запустили мощный инжектор пучка атомов водорода с проектной энергией частиц до одного миллиона электрон-вольт.

    В этом инжекторе пучок атомов образуется за счет нейтрализации ускоренного до нужной энергии пучка отрицательных ионов водорода. Эта экспериментальная установка была разработана и изготовлена по заказу американской компании TAE Technologies, которая занимается созданием безнейтронного термоядерного реактора. С помощью установки ученые планируют отработать технологию нагрева плазмы в реакторе ТАЕ Technologies и продемонстрировать надежность и высокую эффективность работы всех элементов инжектора.

    ©Видео с youtube.com/ https://www.youtube.com/embed/8C5XF2_NvgU

    читать дальше

    •  © wmpics.pics

    Ученые ФИЦ «Красноярский научный центр СО РАН» и Сибирского федерального университета разработали экономичный метод отверждения жидких радиоактивных отходов с высоким содержанием цезия и стронция. Утилизация происходит в щелочной среде при относительно низкой температуре с использованием алюмосиликатных микросфер, выделенных из летучих зол от сжигания угля. Результаты исследования опубликованы в журнале Journal of Nuclear Materials.

    При работе предприятий по переработке уже использованного ядерного топлива и при выводе из эксплуатации ядерных реакторов на быстрых нейтронах образуются большие объемы щелочных радиоактивных отходов, содержащих радионуклиды цезия и стронция. Существующие технологии отверждения предварительно снижают их активность с помощью селективного извлечения радионуклидов. Это приводит к появлению вторичных радиоактивных отходов. Такая многостадийная переработка ресурсозатратна и не всегда эффективна.

    Красноярские химики предложили новый подход, который позволяет в одну стадию перевести содержащиеся в отходах радионуклиды цезия и стронция в нерастворимую минералоподобную форму и одновременно снизить их концентрацию в растворе.

    читать дальше

  • ©Видео с youtube.com/ https://www.youtube.com/embed/mYQXQArWKjY

    Ученые в Новосибирском институте теоретической и прикладной механики разрабатывают икусственное сердце.

    читать дальше

    •  © hightech.fm

    Ученые Сибирского отделение РАН разработали нейросеть для автоматической обработки микроскопических снимков. Искусственный интеллект поможет автоматизировать диагностику рака и в общем сферу анализа микроскопических снимков — это позволит снизить нагрузку на врачей. Об этом пишет ТАСС со ссылкой на и. о. заведующего лабораторией Института твердого тела и механохимии (ИХТТМ) СО РАН Игоря Ломовского.

    При этом нейросеть для автоматизации анализа снимков изначально появилась в рамках изучения возможностей экстракции растительного сырья. «Для понимания этих процессов необходимо проводить анализ микрофотографий ультратонких срезов частиц, и для этого создается нейросеть. Кроме того, автоматическая обработка фото биологических систем позволит наполовину разгрузить медиков, которые занимаются диагностикой новообразований по срезам клеток — нейросеть сможет в автоматическом режиме определять, где нормальная стенка, а где опухоль. Также такая информационная система поможет автоматизировать огромную часть микроскопических исследований», — рассказал Ломовский.

    Ученый добавил, что на сегодняшний день все подобные анализы клеток делаются вручную. «Есть программы, рассчитанные под один вид клеток, но адаптивных программ для анализа разных видов клеток пока нет», — отметил он.

    •  © scfh.ru

    Избранный директор Институт автоматики и электрометрии СО РАН в апреле выступил с двумя приглашёнными докладами на международных лазерных конференциях в Китае и США, в которых он рассказал о разработанных в рамках проекта РНФ новых схемах волоконных лазеров, работающих на эффекте вынужденного комбинационного рассеяния (ВКР).

    читать дальше

    •  © mtdata.ru

    Благодаря применению лазерной обработки поверхности и наноматериалов, ученым из Красноярского научного центра (КНЦ) СО РАН, совместно с коллегами из Национального исследовательского университета «МЭИ» и Московского автомобильно-дорожного государственного технического университета, удалось значительно повысить прочность стали.

    Как рассказали в пресс-службе сибирского научного центра, износостойкость материала, по сравнению с показателями стандартной технической стали, в среднем повышается в пять раз, а максимальный эффект упрочнения — до восьми раз. Коэффициент трения в условиях сухого контакта поверхностей в случае усовершенствованного металла оказался на 20-30 процентов ниже, чем у необработанных образцов.

    Для того чтобы улучшить прочность стали в промышленности широко применяется технология легирования. Ученые предлагают повысить эффективность этого процесса за счет применения таких наноуглеродных материалов, как фуллерен, графен или наноуглеродные трубки, а также лазера для обработки поверхности.

    — Твердость и износостойкость сталей, особенно содержащих соединения углерода, азота или бора, значительно улучшаются после лазерной обработки. Кроме того, лазерное нагревание не вызывает деформации продуктов, что сокращает технологический процесс, поскольку нет необходимости в дополнительной обработке металлических изделий, — подчеркивает научный сотрудник Национального исследовательского университета «Московский энергетический институт» Александр Елецкий.

  • Метод детонационного напыления, развивающийся в Институте гидродинамики им. М. А. Лаврентьева СО РАН, позволяет покрыть нужный материал тонкой пленкой и тем самым улучшить его характеристики. С помощью этой технологии сибирские ученые вместе с французскими коллегами создают элементы оборудования, которое будет установлено на Международном экспериментальном термоядерном реакторе (ITER)

    читать дальше

    •  © vn.ru

    Современная вычислительная техника появилась у ученых Новосибирска в Институте гидродинамики им. М.А.Лаврентьева СО РАН. Раньше у исследователей уходили дни и даже месяцы на расчеты с использованием старой техники, теперь же все будет делаться гораздо быстрее.

    Исследования в лаборатории механики неупорядоченных сред, созданной благодаря мегагранту, потребовали сложных и трудоемких вычислений. Для их проведения НИИ приобрел новейший суперкомпьютерный кластер — его работу будут обеспечивать специалисты Института вычислительной математики и математической геофизики СО РАН, сообщает «Наука в Сибири».

    Вычислительный аппарат в первую очередь связан с самой прикладной частью мегагранта — расчетом данных по гидроразрыву пласта, с помощью которого в нефтегазовой промышленности увеличивают интенсивность добычи. Новая система позволит заметно ускорить необходимые вычисления.

    читать дальше