стань автором. присоединяйся к сообществу!
  • Резидент ОЭЗ «Технополис Москва» готовится к запуску серийного производства фотонных интегральных микросхем и модулей для телекоммуникационного оборудования.

    Эта технология позволяет увеличить скорость передачи информации более чем в 100 раз.

    Фотонные интегральные схемы могут применяться в авиационно-космической отрасли, а также в телекоммуникационной отрасли для организации мощных информационных сетей 5G и 6G, подключения пользователей к высокоскоростному интернету, IP-телефонии и IP-телевидению.

     © www.mos.ru

    читать дальше

    Специалисты холдинга «Российские космические системы» приступили к созданию целевой нагрузки и служебных систем космических аппаратов на основе революционной технологии микрофотоники. Она изменит экономику космоса — при снижении стоимости возможности, надежность и сроки работы «микрофотонных спутников» вырастут в разы.

    читать дальше

    • rofar_russia_0.jpg
    • rofar_russia_0.jpg

    На форуме «Армия-2016» озвучена информация об успешной реализации первого этапа проекта РОФАР (радиоптические фазированные антенные решетки). Новая технология позволит снизить массу радиоэлектронного оборудования боевых кораблей в 5-7 раз.

    Сейчас инженеры концерна «Радиоэлектронные технологии» говорят о завершенной разработке и изготовлении стенда для исследования и измерения характеристик радиофотонной элементной базы, радиофотонных устройств и приемо-передающих модулей (ППМ), а также создании макета радиофотонных устройств РОФАР. В проекте участвуют Физико-технический институт имени А.Ф. Иоффе и центр фотоники «Сколково». Особо подчеркивается, что разработка основана на новых российских ключевых радиофотонных элементах, и в готовом виде новая антенна возьмет на себя функции всех современных антенн, используемых на борту военного корабля.

    Радиооптические фазированные антенные решетки значительно расширят возможности современных средств связи и радаров — их разрешающая способность увеличится в десятки раз. Если у современного локатора частота излучения 10 ГГц, 3 см с шириной спектра 1-2 ГГц, то у РОФАР эта частота может составлять от 1 Гц до 100 ГГц одновременно. На практике это означает, что РОФАР может давать детализированное, объемное изображение того, что происходит на расстоянии сотен километров от него. К примеру, на дальности 400 км можно не просто увидеть человека, но даже узнать его лицо.

  • Исследователи из МФТИ экспериментально доказали, что нанофотонные компоненты на основе меди могут успешно работать в фотонных устройствах наравне с компонентами на основе золота и серебра, медные компоненты вскоре смогут стать основой для оптоэлектронных процессоров с несколькими тысячами ядер.

    «Нам удалось создать медные чипы, оптические свойства которых ни в чем не уступают золотым аналогам», — передает ТАСС заявление лидера исследования Дмитрия Федянина со ссылкой на научный журнал NanoLetters.

    «Более того, мы добились этого в производственном цикле, совместимом с КМОП-технологией, которая является основой всех современных интегральных схем, включая микропроцессоры. Это своего рода революция в нанофотонике», — подчеркнул Федянин.

    читать дальше

    Ученые Института геологии и минералогии СО РАН (Новосибирск) первыми в мире вырастили специальные искусственные алмазы для фотонных компьютеров, сообщил в пресс-центре ТАСС в Новосибирске директор Института геологии и минералогии СО РАН Николай Похиленко.

    «В этом году мы научились выращивать кристаллы с германиевыми дефектными центрами. Это очень важный материал. Мы первыми его вырастили, следом за нами пошли американцы, немцы. Это материал для создания компьютеров нового поколения, так называемых фотонных компьютеров», — сказал он.

    В центр таких алмазов ученые поместили вместо атома углерода атом германия. Название «дефектные», по словам ученого, носят любые алмазы, содержащие что-либо, кроме углерода.

    читать дальше

    Производить фотонные микросхемы, которые смогут заменить существующие электронные аналоги, начнут в Пермском крае. Такие микросхемы, основанные не на электронном, а на оптическом принципе действия, позволят создавать более компактные и малоэнергоемкие приборы, сообщил корреспонденту ИТАР-ТАСС замначальника отдела промышленных инноваций краевого министерства промышленности, предпринимательства и торговли Павел Иванов.

    читать дальше


  •  Источник фото: nanonewsnet.ru




    Научный коллектив Московского государственного института электронной техники разработал метод получения нанопористого оксида алюминия, который позволяет создавать целый ряд современнейших материалов для полупроводниковых приборов, в частности фотонные кристаллы. В настоящее время полупроводниковые приборы микроэлектроники создаются главным образом методом оптической литографии – универсальным способом получения изображения элементом микросхемы на кристалле полупроводника.


     Источник фото: karelia.ru




    Однако литографические методы довольно дороги, развитие их сдерживается рядом физических и технологических ограничений. Поэтому в настоящее время активно развиваются методы, основанные на использовании самоорганизации и самоформирования.

    Один из таких методов – нанопрофилирование (создание рельефа поверхности с наноразмерными элементами) полупроводников путём их плазменного травления с использованием твёрдой маски пористого анодного оксида алюминия. Наглядно этот увлекательный научный процесс можно представить следующим образом: рисунок с полимерного светочувствительного материала переносится на соответствующие слои полупроводниковой структуры, по ходу удаляются немаскированные участки полимера (собственно, этот метод и называется травлением). Для оптимизации этого процесса в структуру маски из оксида алюминия вводят металлический подслой, в частности тонкую плёнку титана. Однако в настоящий момент в научной литературе практически отсутствуют данные, позволяющие подобрать оптимальные конструктивные параметры двухслойной твёрдой маски и контролировать процесс нанопрофилирования полупроводников с её использованием.

    Для решения этой проблемы учёные из Московского государственного института электронной техники под руководством А. Н. Белова исследовали процесс создания твёрдой маски пористого оксида алюминия для нанопрофилирования кремния.

    В качестве исходных исследователи выбрали кремниевые пластины, на которые с помощью магнетронного распыления нанесли послойно плёнки титана толщиной от 10 до 50 нм и алюминия толщиной 2 мкм. Двухстадийным анодированием (анодирование – электрохимическое окисление алюминия с целью образования на его поверхности оксида металла) алюминиевой плёнки сформировали маску пористого оксида алюминия. Затем полученные структуры подвергали обработке в установке ионного травления в среде аргона. С использованием последовательного и поэтапного анализа структур выявляли их состояние на разных стадиях процесса анодирования, а также после их бомбардировки нейтральными частицами аргона.

    Авторы определили оптимальное время анодирования для создания эффективной твёрдой маски пористого оксида алюминия, выявили оптимальную толщину вспомогательного подслоя титана. Кроме того, они показали, что при плазменном травлении кремния через маску оксида алюминия латеральные размеры углублений в кремнии зависят от аспектного отношения пор оксида алюминия. Учёным в ходе данных исследований удалось добиться таких условий, при которых нанопрофилирование кремниевой подложки проходит так, что углубления в ней точно повторяют рисунок пор твёрдой маски оксида алюминия.

    Источник информации:

    А. Н. Белов, С. А. Гаврилов, Ю. А. Демидов, В. И. Шевяков «Особенности формирования маски пористого анодного оксида алюминия для плазменного локального травления кремния». Российские нанотехнологии, №№11–12, 2011.

    17.11.11
    Шабельский Алексей