стань автором. присоединяйся к сообществу!

  •  Источник фото: canalblog.com




    Сотрудники НОЦ «Квантовые приборы и нанотехнологии» ФИАН и МИЭТ разработали технологию получения быстродействующей электронной компонентной базы нового поколения на основе квантовых эффектов резонансного туннелирования. Речь идет о технологии монолитной планарной интеграции резонансно-туннельных диодов, полевых транзисторов и диодов Шоттки. Она позволяет существенно увеличить быстродействие, снизить количество активных элементов цифровых интегральных схем и полностью совместима со стандартной технологией арсенид-галлиевых интегральных схем.

    читать дальше


  •  Источник фото: wikimedia.org




    Работу над новым совместным исследовательским проектом начали специалисты Физического института им. П.Н. Лебедева совместно с группой профессора Михаила Лукина в Гарварде. Методы, разработанные для исследований в области квантовой информации, ученые впервые применили в эксперименте на живой клетке. Ожидается, что этот подход предоставит совершенно новые возможности для измерения параметров жизнедеятельности клетки с помощью магнитометрии. Реализация проекта исключительно важна не только для физиков, но и для биологов и медиков.

    Технологии, используемые при работах в области квантовой информации, позволяют измерять состояние кубита или центра окраски в алмазе. В новом проекте (российско-американская коллаборация) такие тонкие инструменты и методы впервые применены для исследования процессов в живой клетке. В клетку имплантируется алмазный кристалл размером 20-30 нм с центром окраски. При облучении алмаза импульсным монохроматическим (лазеры) и электромагнитным излучением центр окраски возбуждается и начинает излучать. Результаты измерений возникающего магнитного поля позволят получить количественные данные о биохимических процессах в клетке, о состоянии среды в окружении этого кристалла, например, о движении свободных радикалов, и пр.

    читать дальше


  •  Источник фото: ru09.ru




    Новая разработка разделения изотопов осуществлена в Национальном исследовательском ядерном университете «МИФИ» (НИЯУ МИФИ) в рамках федеральной целевой программы «Научные и научно-педагогические кадры инновационной России», сообщает Минобрнауки РФ.

    «Речь идёт о физико-математической модели течения в рабочей камере одиночной газовой центрифуги для смеси фторидов урана и фтора в двумерном приближении. В результате исследований разработана теория оптимального по суммарному потоку каскада для разделения бинарных и многокомпонентных изотопных смесей», – говорится в сообщении министерства.

    «Полученные результаты позволили разработчикам не только создать прикладную компьютерную программу по газовой динамике, но и написать учебник «Физические основы разделения изотопов в газовой центрифуге», ставший победителем общероссийского конкурса рукописей учебной и учебно-справочной литературы по атомной энергетике Росатома в 2009 году», – сообщил профессор НИЯУ МИФИ Валентин Борисевич, слова которого цитирует Минобрнауки.


     Источник фото: nanonewsnet.ru




    Профессор уточнил, что работы проводились в рамках совместного русско-китайского проекта «Разработка теории оптимального по суммарному потоку каскада для разделения многокомпонентных изотопных смесей».

    «Технологии разделения изотопов урана являются важнейшим элементом успешного функционирования ядерного энергетического комплекса. Научные исследования, имеющие, подобно этому, фундаментальный характер, обеспечивают опережающее инновационное развитие перспективных ядерных технологий», – отмечает Минобрнауки.

    Источник(и): РИА Новости

  • Почему перспективы есть только у термоядерной энергетики, когда на Земле появятся первые «реакторы будущего» и как учёные из Новосибирска приближают наступление этого дня?


     Источник фото: nsc.ru



    Сегодня в мире ведется много исследований, призванных ответить на вопрос, откуда человечество будет получать энергию после того, как закончатся запасы нефти и газа. Угольные ТЭЦ загрязняют атмосферу и ухудшают экологию, ГЭС и так стоят уже практически на всех крупных реках, АЭС после аварий население считает опасными, а солнечная и ветровая энергия не может обеспечить промышленных объемов. Поэтому единственным перспективным вариантом энергетических станций будущего остаются термоядерные реакторы. И Институт ядерной физики сегодня активно приближает время воплощения термоядерной энергетики из научной идеи в реальную жизнь.

    читать дальше

  • Учреждение Российской Академии Наук Объединенный институт высоких температур РАН ведет свое начало с 1960 года — года создания Лаборатории высоких температур АН СССР. За прошедшие 50 лет Институт из небольшой научной лаборатории при МЭИ превратился в крупнейшее учреждение Отделения энергетики, машиностроения, механики и процессов управления РАН, ведущий научный центр страны в области энергетики и теплофизики экстремальных состояний.

    Корпуса института на Ижорской улице<br/>
    Корпуса института на Ижорской улице

     Источник фото: tripod.com




    Основными направлениями деятельности Института являются:

    — решение проблем создания эффективной, безопасной, надежной и экологически чистой современной энергетики, в том числе атомной, водородной, авиационной, космической и криогенной;
    — исследования теплофизических, электрофизических, оптических и динамических свойств веществ и низкотемпературной плазмы в широком диапазоне параметров, включая экстремальные;
    — исследования процессов тепло- и массообмена, физической газо- и плазмодинамики, преобразования видов энергии при переменных свойствах рабочих тел и высокой плотности энергетических потоков;
    — исследования в области теплофизики интенсивных импульсных воздействий на вещество, материалы и конструкции; разработка методов и создание средств генерации высоких плотностей энергии;
    — исследования в области энергоресурсосбережения и энергоэффективных технологий, химической энергетики, повышения эффективности использования природных топлив и сырья, использования возобновляемых источников энергии.

    читать дальше


  •  Источник фото: transas.ru



    21 сентября. Беспилотный аппарат Дозор-100 с бортовым номером 003 производства ЗАО «Кронштадт Технологии» (входит в ГК «Транзас») произвел испытательный полет с комплексом геофизического оборудования.
    Важно отметить, что масса полезной нагрузки в испытательном полете составила 18 кг, что на 3 кг больше расчетной.

    читать дальше


  •  Источник фото: rg.ru


    Российские системы ночного видения — лучшие в мире. И лишь инертность мышления тормозит их внедрение в широкую военную и гражданскую практику. Московская «Геофизика-НВ» показала технику и технологию такого уровня, который сегодня по силам лишь промышленности США, да и то не всегда. Закончены разработка и испытания очков ночного видения нового поколения.

    читать дальше

  • В Объединенном институте ядерных исследований начались летние сессии программно-консультативных комитетов с участием ведущих ученых из научных центров мира. Открыла их 34-я сессия ПКК по ядерной физике под председательством профессора Вальтера Грайнера (Германия), проходящая 16–17 июня 2011 года.

    Один из основных докладов, об экспериментах на установке ИРЕН и её модернизации в рамках Семилетнего плана развития ОИЯИ, сделал заместитель директора Лаборатории нейтронной физики имени И.М. Франка В.Н. Швецов.
    ИРЕН (Источник РЕзонансных Нейтронов) — базовая установка нового поколения, предназначенная для решения широкого круга фундаментальных и прикладных задач. Ко времени проведения нынешней сессии ПКК из 800 часов, запланированных на 2011 год, установка отработала 400.


     Источник фото: jinr.info


    читать дальше