• Энергия выделяется за счёт распада радиоактивного изотопа.

    Физики из Московского физико-технического института (МФТИ), Технологического института сверхтвёрдых и новых углеродных материалов(ТИСНУМ) и Национального исследовательского технологического университета «МИСиС» разработали новый источник питания. Электроэнергия в нём производится за счёт бета-распада никеля-63.

    Российские и американские физики-ядерщики из коллаборации DZero, работающей с американским детектором Тэватрон, объявили об открытии экзотической «радужной» частицы, состоящей из четырех кварков всех четырех их «цветов».

    Коллектив физиков, в том числе и ряд российских ученых из МГУ им. М.В. Ломоносова и институтов Академии наук, представил результаты анализа данных, собранных детектором D0 за все время работы Теватрона при наблюдениях за распадами редчайших частиц — так называемых «странных» B-мезонов.

  • По словам разработчиков, приборы выдерживают радиационное воздействие в 100 раз больше аналогов и могут работать до 10 лет

    © Павел Комаров/ТАСС

    ТОМСК, 20 ноября. /ТАСС/. Ученые Томского госуниверситета (ТГУ) изготовили детекторы для измерения уровня радиации в каналах Большого адронного коллайдера (БАК) Европейской организации по ядерным исследованиям (CERN), сообщил ТАСС профессор ТГУ Олег Толбанов.

    «Предварительные испытания (на БАК — прим. ТАСС) должны завершиться до середины декабря, основные испытания — в январе. Мы надеемся, что разработанные в Сибирском физико-техническом институте ТГУ детекторы будут использовать (в CERN — прим. ТАСС). То, что они радиационно-стойкие, было показано еще на испытаниях в 1997 году», — сказал он.

    Профессор отметил, что томские датчики выдерживают радиационное воздействие в 100 раз больше аналогов и могут работать до 10 лет. В случае успеха испытаний ТГУ поставит CERN около 8 тысяч детекторов для эксперимента ATLAS по поиску сверхтяжелых элементарных частиц, в частности, бозона Хиггса.

    14 июля коллаборация LHCb1 Большого адронного коллайдера заявила об открытии пентакварка — частицы, состоящей из пяти кварков. Это новый класс частиц.

    В эксперименте участвовало множество ученых из разных стран. Была проделана гигантская работа, чтобы «придумать», «запустить» и поддерживать коллайдер в рабочем состоянии. Список участников коллаборации LHCb — авторов статьи о пентакварка, которую планируют опубликовать в журнале Physical Review Letters, насчитывает около двухсот человек. Все они в той или иной мере принимали участие в проделанной работе. Россия представлена восемью институтами и двумя университетами (в том числе ИЯФ СО РАН и НГУ).

    Открытие пентакварка изменит лицо физики экспериментальных частиц: теоретикам придется искать модели, объясняющие существование двух пентакварков, а экспериментаторам — менять программы набора данных, чтобы найти подобные ему частицы. Такое мнение выразил в беседе с корр. ТАСС один из авторов открытия, физик коллаборации LHCb БАК, старший научный сотрудник Института теоретической и экспериментальной физики Иван Беляев.

    • Ядерщики Томского политеха, часть 2: кремний и топазы
    • Ядерщики Томского политеха, часть 2: кремний и топазы

    Ученые лаборатории № 33 Томского политехнического университета (ТПУ) с помощью единственного за Уралом ядерного исследовательского реактора облучают 2% от мирового объема нейтронного легированного кремния, без которого невозможно сделать ни один электроприбор. Кроме того, ученые разрабатывают технологию окраски в небесно-голубые цвета топазов, которые так популярны у женщин.

    Всему голова

    «Полупроводниковый кремний — это основа всех приборов, существующих в мире. Фотоаппараты, компьютеры — все делается на основе этого материала. Без него невозможно современное развитие техники», - рассказывает заведующий лабораторией № 33 Физико-технического института ТПУ, кандидат технических наук Валерий Варлачев.


  •  Источник фото: ru09.ru




    Новая разработка разделения изотопов осуществлена в Национальном исследовательском ядерном университете «МИФИ» (НИЯУ МИФИ) в рамках федеральной целевой программы «Научные и научно-педагогические кадры инновационной России», сообщает Минобрнауки РФ.

    «Речь идёт о физико-математической модели течения в рабочей камере одиночной газовой центрифуги для смеси фторидов урана и фтора в двумерном приближении. В результате исследований разработана теория оптимального по суммарному потоку каскада для разделения бинарных и многокомпонентных изотопных смесей», – говорится в сообщении министерства.

    «Полученные результаты позволили разработчикам не только создать прикладную компьютерную программу по газовой динамике, но и написать учебник «Физические основы разделения изотопов в газовой центрифуге», ставший победителем общероссийского конкурса рукописей учебной и учебно-справочной литературы по атомной энергетике Росатома в 2009 году», – сообщил профессор НИЯУ МИФИ Валентин Борисевич, слова которого цитирует Минобрнауки.


     Источник фото: nanonewsnet.ru




    Профессор уточнил, что работы проводились в рамках совместного русско-китайского проекта «Разработка теории оптимального по суммарному потоку каскада для разделения многокомпонентных изотопных смесей».

    «Технологии разделения изотопов урана являются важнейшим элементом успешного функционирования ядерного энергетического комплекса. Научные исследования, имеющие, подобно этому, фундаментальный характер, обеспечивают опережающее инновационное развитие перспективных ядерных технологий», – отмечает Минобрнауки.

    Источник(и): РИА Новости

  • Почему перспективы есть только у термоядерной энергетики, когда на Земле появятся первые «реакторы будущего» и как учёные из Новосибирска приближают наступление этого дня?


     Источник фото: nsc.ru



    Сегодня в мире ведется много исследований, призванных ответить на вопрос, откуда человечество будет получать энергию после того, как закончатся запасы нефти и газа. Угольные ТЭЦ загрязняют атмосферу и ухудшают экологию, ГЭС и так стоят уже практически на всех крупных реках, АЭС после аварий население считает опасными, а солнечная и ветровая энергия не может обеспечить промышленных объемов. Поэтому единственным перспективным вариантом энергетических станций будущего остаются термоядерные реакторы. И Институт ядерной физики сегодня активно приближает время воплощения термоядерной энергетики из научной идеи в реальную жизнь.