стань автором. присоединяйся к сообществу!
Лого Сделано у нас
39

В МФТИ предложили схему спинового диода, «зажатого» между слоями различных антиферромагнетиков

  •  © lh4.googleusercontent.com

Физики из МФТИ предложили схему спинового диода, «зажатого» между слоями различных антиферромагнетиков. Оказалось, что сопротивлением и резонансной частотой такого прибора можно управлять, «поворачивая» антиферромагнетики. Этот подход позволяет в несколько раз увеличить диапазон частот, на которых устройство выпрямляет переменный ток, а чувствительность прибора оказывается сравнима с чувствительностью полупроводниковых диодов. Статья опубликована в Physical Review B.

Константин Звездин, старший научный сотрудник лаборатории физики магнитных гетероструктур и спинтроники для энергосберегающих информационных технологий МФТИ, руководитель проекта «Спинтроника» Российского квантового центра, комментирует: «Обычные спиновые диоды со свободными ферромагнитными слоями могут работать на фиксированных частотах, не превышающих двух-четырёх гигагерц. В данной работе мы предложили схему спинового диода, в котором ферромагнитные слои связаны со слоями антиферромагнетиков, что позволяет увеличить частотный диапазон устройства примерно до 10 гигагерц, причём без значительной потери чувствительности. Это существенно расширяет область возможного использования спиновых диодов, открывая для них такие приложения, как, например, всепогодное машинное зрение, основанное на микроволновой голографии».

В данной работе учёные из МФТИ описывают способ, с помощью которого можно задавать резонансную частоту спинового диода при изготовлении, а также повысить рабочую частоту. Для этого физики предлагают «зажать» диод между двумя антиферромагнитными слоями. Благодаря обменному закреплению (exchange pinning) слои ферромагнетиков и антиферромагнетиков оказываются связаны, что позволяет управлять углом между намагниченностями ферромагнетиков — а значит, сопротивлением и резонансной частотой прибора. Чтобы проверить работоспособность предложенной схемы, учёные численно смоделировали спиновый диод со слоями толщиной порядка нескольких нанометров, а затем исследовали его свойства.

Ранее учёные из МФТИ научились закручивать магнитные вихри в спинтронных устройствах, образованных ферромагнетиком и топологическим изолятором. Топологический изолятор — это материал, который проводит электрический ток только по поверхности, а внутри является обычным изолятором.

Работа поддержана Российским научным фондом.

Хочешь всегда знать и никогда не пропускать лучшие новости о развитии России? У проекта «Сделано у нас» есть Телеграм-канал @sdelanounas_ru. Подпишись, и у тебя всегда будет повод для гордости за Россию.


  • 2
    box320 box320
    11.02.1814:03:25

    Спины какие-то закручивать научились. Ишь ты…    

    Отредактировано: box320~14:07 11.02.18
  • 2
    Нет аватара sem704aaa
    11.02.1816:29:03

    Если это довести до практики, то ребят, это более дешевые приборы, с лучшими эксплуатационными характеристиками

Написать комментарий
Отмена
Для комментирования вам необходимо зарегистрироваться и войти на сайт,