стань автором. присоединяйся к сообществу!
Лого Сделано у нас
27

Ученые МФТИ открыли дорогу к созданию быстрых «плазмонных» чипов

Ученые МФТИ открыли дорогу к созданию быстрых «плазмонных» чипов.

Ученые из лаборатории нанооптики и плазмоники центра наноразмерной оптоэлектроники МФТИ разработали новый метод передачи данных, который позволит уменьшить размеры оптических и оптоэлектронных элементов и увеличить быстродействие компьютеров в десятки раз: они нашли способ избавиться от потерь энергии при использовании поверхностных плазмонов в оптических устройствах, — говорится в статье, опубликованной в журнале Optics Express.

«Поверхностные плазмон-поляритоны уже предлагались на роль носителей информации при передаче данных, однако проблема состояла в том, что сигнал крайне быстро затухал при распространении по волноводам. Нам удалось решить эту проблему, что открывает дорогу к созданию нового поколения быстродействующих оптоэлектронных чипов», — говорит руководитель исследования Дмитрий Федянин.

Современная электроника основана на использовании электронов в качестве носителей информации, однако они перестают отвечать современным требованиям: классические медные провода и дорожки на чипах уже не могут передавать информацию с достаточной для современных процессоров скоростью. Это уже сегодня ограничивает рост производительности микропроцессоров, и для поддержания закона Мура требуется внедрение принципиально новых технологий.

Переход от электрических импульсов к оптическим может решить эту проблему. Высокая частота оптического диапазона (это сотни терагерц) позволяет передавать и обрабатывать больше данных, а значит, повысить быстродействие. Оптоволоконные технологии широко используются в коммуникационных сетях, но использование света в процессорах и логических элементах наталкивается на проблему дифракционного предела: размеры волноводов и других оптических элементов не могут быть значительно меньше длины волны. Для ближнего инфракрасного излучения, которое используется для передачи данных, это микроны, что никак не соответствует требованиям к современной электронике. Логические элементы «обычных» современных процессоров имеют размеры в десятки нанометров. Оптическая электроника может стать конкурентоспособной, если удастся «сжать» свет до этого масштаба.

Обойти дифракционный предел становится возможным, если перейти от фотонов к поверхностным плазмон-поляритонам — коллективным возбуждениям, представляющим собой взаимодействие между фотонами и колебаниями электронов в металле на границе между металлом и диэлектриком. Их также называют квазичастицами, потому что по своим свойствам они в значительной степени похожи на обычные частицы, такие как фотоны или электроны. В отличие от объемных световых волн, поверхностные поляритоны «держатся» за границу раздела двух сред, являясь поверхностными электромагнитными волнами. Это позволяет перейти от привычной трехмерной оптики к двумерной.

«Грубо говоря, фотон в пространстве занимает определенный объем, порядка длины волны света. Мы можем „сжать“ его, преобразовав в поверхностный плазмон-поляритон. Соответственно, используя такой подход, удается повысить степень интеграции и снизить размеры оптических элементов. Но у этого замечательного решения, к сожалению, есть обратная сторона. Для того, чтобы существовал поверхностный плазмон-поляритон, нужен металл, точнее электронный газ в нем. А это влечет за собой запредельно высокие Джоулевы потери, подобные тем, что мы имеем, пропуская постоянный ток по металлическим проводам, но только на оптических частотах», — говорит Федянин.

По его словам, из-за поглощения в металле энергия плазмонов на расстоянии около миллиметра падает в миллиарды раз, что фактически лишает смысла попытки использовать их на практике.

  • рис_1.jpg
  • рис_1.jpg
Рис. 1. Активный гибридный плазмонный волновод

«Наша идея состоит в том, чтобы скомпенсировать потери, закачивая дополнительную энергию в поверхностные плазмон-поляритоны. Если мы хотим интегрировать плазмонные волноводы в чипы, то можно использовать только электрическую накачку», — поясняет ученый.

Он и его коллеги Дмитрий Свинцов и Алексей Арсенин из лаборатории нанооптики и плазмоники разработали новый метод электрической накачки плазмонных волноводов на основе МДП-структур (металл-диэлектрик-полупроводник) и провели его моделирование. Расчеты показывают, что пропускание относительно слабых токов накачки через наноразмерные плазмонные волноводы позволяет полностью компенсировать потери поверхностных плазмонов, а значит, становится возможным передавать сигнал без потерь на большие (по меркам чипа) расстояния. При этом степень интеграции таких активных плазмонных волноводов на порядок выше, чем фотонных.

  • рис_22.jpg
  • рис_22.jpg

Рис. 2. Изображение наноразмерных плазмонных волноводов в растровом электронном микроскопе

«В оптоэлектронике всегда приходится находить компромисс между оптическим и электрическими свойствами, что зачастую невозможно в плазмонике, где выбор металлов ограничен тремя-четырьмя материалами. Основным достоинством предложенной схемы накачки является ее независимость от свойств контакта металл-полупроводник. Подбирая под каждый полупроводник диэлектрик, можно добиться такой же эффективности, как в случае гетероструктурных лазеров, при этом сохранив характерные размеры плазмонной структуры на уровне 100 нанометров», — говорит Федянин.

  • рис_3d.jpg
  • рис_3d.jpg

Рис. 3. Принцип работы электрической накачки на основе МДП (металл-диэлектрик-полупроводникового) контакта

Авторы исследования отмечают, что полученные ими результаты еще ждут экспериментальной проверки, но ключевое препятствие устранено.

Исследование поддержано грантом Российского научного фонда #14-19-01788 и программой повышения конкурентоспособности МФТИ «5-100» .

Ссылка на оригинальную статью: D.A. Svintsov, A.V. Arsenin, D.Yu. Fedyanin, Full loss compensation in hybrid plasmonic waveguides under electrical pumping // Optics Express 23, 19358-19375 (2015).

Хочешь всегда знать и никогда не пропускать лучшие новости о развитии России? У проекта «Сделано у нас» есть Телеграм-канал @sdelanounas_ru. Подпишись, и у тебя всегда будет повод для гордости за Россию.

  • 0
    Нет аватара BearRus
    10.08.1517:50:12

    жду не дождусь, когда появится у нас компания сравнимая по масштабам и технологиям Intel или (судя по таким новостям) даже превосходящая!

    • 0
      Нет аватара Batut
      10.08.1519:56:10

      не смешите. До этого еще, как до Луны, увы…

      А подобные статьи с моделированием выходят регулярно. Тут просто массированный пиар (вузы сейчас пиарят в противовес институтам бывшей Академии).

      • 1
        Нет аватара BearRus
        10.08.1522:49:18

        а чего тут смешного? луна тоже не так далеко как кажется

    • 0
      Нет аватара Nikk
      10.08.1521:13:53

      Всё в наших руках!    

  • 0
    NovaM3 NovaM3
    11.08.1502:05:08

    Подобная статья была пару дней назад, но эта объемнее.

  • 0
    Alexander Korolev
    02.09.1510:17:07

    «Наша идея состоит в том, чтобы скомпенсировать потери, закачивая дополнительную энергию в поверхностные плазмон-поляритоны."

    Основная проблема при разработке миниатюрных вычислителей (процессоров) — это энерговыделение (нагрев). Повышение частоты сигналов или уменьшение размера элементов его увеличивает. Решение этой проблемы- в уменьшении энергии электронов (тока) или уход от них к фотонам, фононам, волнам электрического и магнитного поля. Оно может быть реализуемо при разработке высокочувсвтительных элементов, размер структурных частей которых приближаются к атомарным.

    Тут же обходится проблема миниатюризации и предлагается закачивать дополнительную энергию. куда её девать потом?

Написать комментарий
Отмена
Для комментирования вам необходимо зарегистрироваться и войти на сайт,