•  Источник фото: nkj.ru




    Для эволюционной биологии вопрос сравнения ДНК и РНК последовательностей — один из ключевых, в частности, он позволяет судить о том, насколько далеко в эволюционном смысле разошлись друг от друга два рассматриваемых гена, и какие гены могут являться их общими предками. И если вопрос сравнения двух последовательностей молекул дезоксирибонуклеиновой кислоты (ДНК) с алгоритмической точки зрения не вызывает принципиальных трудностей, то задача построения алгоритма сравнения молекул рибонуклеиновой кислоты (РНК) наталкивается на серьезные препятствия и несмотря на значительный прогресс в этой области, до сих пор полностью не решена. Дело в том, что молекулы РНК содержат нетривиальную вторичную структуру типа «клеверного листа» или «кактуса». Сергей Нечаев (ФИАН), Михаил Тамм (МГУ) и Ольга Вальба (МФТИ) предлагают метод сравнения РНК, учитывающий как порядок следования нуклеотидов, так и комбинаторику, обусловленную тем, что молекула РНК может образовать разные кактусоподобные структуры.

    читать дальше


  •  Источник фото: photos4travel.com



    Суперкомпьютер производительностью до 10 эксафлопс может быть создан в Московском государственном университете имени Ломоносова в ближайшие пару лет, сообщил ректор университета Виктор Садовничий.

    Сейчас в университете установлен суперкомпьютер «Ломоносов» с пиковой производительностью 1,3 петафлопс (10 в пятнадцатой степени вычислительных операций с плавающей запятой в секунду). «Я думаю, что в ближайшие год-два в Московском университете будет создан супервычислитель уже эксафлопсной скорости, до 10 эксафлопс (10 тысяч петафлопс). То есть мы принимаем и дальше вызов по созданию таких машин», – сказал Садовничий, выступая на открытии Шестого московского фестиваля науки.

    Эксафлопсный суперкомпьютер может выполнять свыше квинтиллиона (10 в восемнадцатой степени) операций в секунду. Таким образом, суперкомпьютер до 10 эксафлопс станет в несколько тысяч раз мощнее «Ломоносова».

    читать дальше

  • Научно-исследовательский вычислительный центр МГУ имени М. В. Ломоносова (НИВЦ МГУ) и Межведомственный суперкомпьютерный центр РАН (МСЦ РАН) опубликовали сегодня 15-ю редакцию рейтинга мощнейших вычислительных систем СНГ «Топ-50».


     Источник фото: imageban.ru



    Бесспорным лидером остаётся комплекс «Ломоносов» компании «Т-Платформы»: после модернизации его производительность поднялась с 397,1 до 674,1 терафлопса. В мировом рейтинге Top500 по состоянию на июнь он занимает 13-е место.

    читать дальше

  • Параметры передовых мировых установок позволяют создать в лабораторных условиях аналог релятивистской астрофизической плазмы. Уровни возникающих при этом электромагнитных полей не могут быть достигнуты даже при взрывах сверхновых звезд во Вселенной. Исследования, проводимые в Совместной лаборатории релятивистской лазерной плазмы (ФИАН-МГУ), осуществляются на стыке лазерной физики, физики плазмы, физики высоких энергий, астрофизики, ядерной физики и радиационной медицины.
    Результаты этого совместного проекта ФИАН-МГУ могут быть использованы не только при решении фундаментальных проблем, но и в целом ряде задач прикладного характера, в том числе, в медицине, биологии, материаловедении, микроэлектронике.


     Источник фото: fian-inform.ru



    С появлением компактных сверхмощных лазерных установок появилась возможность создавать сверхсильные электрические поля, способные ускорять заряженные частицы с темпом ускорения, намного превосходящим уровень, который может быть достигнут на самых передовых ускорителях, включая самую крупную экспериментальную установку в мире — Большой адронный коллайдер.

    Сотрудниками Совместной лаборатории релятивисткой лазерной плазмы под руководством главного научного сотрудника ФИАН В.Ю. Быченкова и проф. МГУ А.Б. Савельева-Трофимова был предложен ряд идей, касающихся оптимизации условий взаимодействия лазерного излучения с веществом с целью создания компактного лазерного ускорителя частиц. Была предложена схема создания компактного источника жесткого рентгеновского излучения. Энергии ускоренных электронов в этих условиях становятся релятивистскими, размеры объектов, которые облучает лазер, часто не превышают одного микрона, что фактически означает появление нового научного направления, получившего название «релятивистская наноплазмоника».

    читать дальше