• Ученые Морского госуниверситета имени адмирала Г.И. Невельского первыми опробовали новый телеуправляемый подводный аппарат "МАКС-300" в открытом море. Таких испытаний в России еще не проводилось.

    - Этих экспериментов мы ждали два года, - рассказывает проректор по научной работе Олег Букин. - Конечно, мы тестировали аппарат в бухте Патрокл во время приемки, но это никак не сравнится с испытаниями в условиях открытого моря: здесь высокий борт, волнение, ветер... С помощью "МАКС-300" мы осмотрели правый борт парусника, подводную часть корпуса судна.

    • в условиях открытого моря на борту парусника "Надежда" прошли испытания подводного аппарата "МАКС-300"
    • в условиях открытого моря на борту парусника "Надежда" прошли испытания подводного аппарата "МАКС-300"

    читать дальше

     

    Группа учёных из МГУ им. М. В. Ломоносова и НИЦ «Курчатовский институт» разработала газовый сенсор на основе нанокристаллического оксида индия – материала, который давно используется как чувствительный элемент, способный определить наличие диоксида азота в воздухе. Электрические свойства подобных материалов напрямую зависят от структуры их поверхности. Если к поверхности оксида индия присоединяются молекулы, отличные от молекул кислорода, то его проводимость сразу же меняется. В данном исследовании учёные изучили, как влияет размер нанокристаллов оксида индия на его чувствительность к диоксиду азота, и определили оптимальный размер частиц оксида индия для создания сенсора с наибольшей чувствительностью.

    Диоксид азота (NO2) – один из наиболее токсичных газов, содержащихся в атмосфере, поэтому необходимо контролировать его концентрацию в воздухе. Это можно делать при помощи полупроводниковых сенсоров, чувствительных к повышенному содержанию различных газов в окружающей среде. Принцип действия таких устройств заключается в том, что они способны изменять свою электрическую проводимость в зависимости от количества адсорбированных на поверхности молекул газа.

    читать дальше

  • Проект «Суперкомпьютерное образование» был запущен в России в 2010 г. на базе ряда научно-образовательных центров страны.


     Источник фото: nanonewsnet.ru



    Суперкомпьютер «Ломоносов».

    «Легче назвать те науки, где не используются суперкомпьютеры»

    О суперкомпьютерах (о них мы уже сегодня упоминали в статьях 1 и 2), о проблемах, которые возникают при их использовании в России, и о том, как эти проблемы будут решены с помощью программы «Суперкомпьютерное образование», в интервью «Газете.Ru» рассказал заместитель директора Научно-исследовательского вычислительного центра МГУ имени М. В. Ломоносова, член-корреспондент РАН Владимир Воеводин.

    Дайте, пожалуйста, определение того, что такое суперкомпьютер.
    — Это любой компьютер, который занимает большой зал. Это любой компьютер, который стоит больше миллиона долларов. Это любой компьютер, который весит больше тонны.

    – А если сравнить суперкомпьютер с ноутбуком?

    — Это тот компьютер, который считает на пять порядков быстрее ноутбука. А для того, чтобы считать быстрее всего, нужно занимать целый зал.

    – В июне этого года был объявлен рейтинг топ-500 мировых суперкомпьютеров. Первое место там занял японский суперкомпьютер K. Расскажите, пожалуйста, как менялась мощность суперкомпьютеров – мировых лидеров за последние 15–20 лет.

    — Давайте посмотрим на соответствующий график.


     Источник фото: nanonewsnet.ru



    Рис. 1.

    Рейтинг топ-500 суперкомпьютеров публикуется с 1993 года два раза в год, в июне и в ноябре. Розовым отмечено последнее, пятисотое, место рейтинга. Красным – первое место. Оно всегда «рваное», потому что все пытаются вырваться наверх, и это происходит «скачком». Последняя точка здесь – это как раз нынешний лидер рейтинга, японский K-компьютер. Закон изменения производительности удивительный: он почти линейный. Соответственно, можно спрогнозировать, какими суперкомпьютерами мы будем обладать через 10–20 лет и когда будет достигнута мощность в 1 экзафлопс.

    Новый рейтинг будет обнародован позднее, на конференции по суперкомпьютерам в США.

    – Согласно рейтингу топ-500, самый мощный суперкомпьютер в России и на постсоветском пространстве – это «Ломоносов», занимающий 13-е место. Есть ли у кого-то в нашей стране идея создать в ближайшее время суперкомпьютер, который был бы мощнее «Ломоносова»?

    читать дальше


  •  Источник фото: nkj.ru




    Для эволюционной биологии вопрос сравнения ДНК и РНК последовательностей — один из ключевых, в частности, он позволяет судить о том, насколько далеко в эволюционном смысле разошлись друг от друга два рассматриваемых гена, и какие гены могут являться их общими предками. И если вопрос сравнения двух последовательностей молекул дезоксирибонуклеиновой кислоты (ДНК) с алгоритмической точки зрения не вызывает принципиальных трудностей, то задача построения алгоритма сравнения молекул рибонуклеиновой кислоты (РНК) наталкивается на серьезные препятствия и несмотря на значительный прогресс в этой области, до сих пор полностью не решена. Дело в том, что молекулы РНК содержат нетривиальную вторичную структуру типа «клеверного листа» или «кактуса». Сергей Нечаев (ФИАН), Михаил Тамм (МГУ) и Ольга Вальба (МФТИ) предлагают метод сравнения РНК, учитывающий как порядок следования нуклеотидов, так и комбинаторику, обусловленную тем, что молекула РНК может образовать разные кактусоподобные структуры.

    читать дальше


  •  Источник фото: photos4travel.com



    Суперкомпьютер производительностью до 10 эксафлопс может быть создан в Московском государственном университете имени Ломоносова в ближайшие пару лет, сообщил ректор университета Виктор Садовничий.

    Сейчас в университете установлен суперкомпьютер «Ломоносов» с пиковой производительностью 1,3 петафлопс (10 в пятнадцатой степени вычислительных операций с плавающей запятой в секунду). «Я думаю, что в ближайшие год-два в Московском университете будет создан супервычислитель уже эксафлопсной скорости, до 10 эксафлопс (10 тысяч петафлопс). То есть мы принимаем и дальше вызов по созданию таких машин», – сказал Садовничий, выступая на открытии Шестого московского фестиваля науки.

    Эксафлопсный суперкомпьютер может выполнять свыше квинтиллиона (10 в восемнадцатой степени) операций в секунду. Таким образом, суперкомпьютер до 10 эксафлопс станет в несколько тысяч раз мощнее «Ломоносова».

    читать дальше

  • Научно-исследовательский вычислительный центр МГУ имени М. В. Ломоносова (НИВЦ МГУ) и Межведомственный суперкомпьютерный центр РАН (МСЦ РАН) опубликовали сегодня 15-ю редакцию рейтинга мощнейших вычислительных систем СНГ «Топ-50».


     Источник фото: imageban.ru



    Бесспорным лидером остаётся комплекс «Ломоносов» компании «Т-Платформы»: после модернизации его производительность поднялась с 397,1 до 674,1 терафлопса. В мировом рейтинге Top500 по состоянию на июнь он занимает 13-е место.

    читать дальше

  • Параметры передовых мировых установок позволяют создать в лабораторных условиях аналог релятивистской астрофизической плазмы. Уровни возникающих при этом электромагнитных полей не могут быть достигнуты даже при взрывах сверхновых звезд во Вселенной. Исследования, проводимые в Совместной лаборатории релятивистской лазерной плазмы (ФИАН-МГУ), осуществляются на стыке лазерной физики, физики плазмы, физики высоких энергий, астрофизики, ядерной физики и радиационной медицины.
    Результаты этого совместного проекта ФИАН-МГУ могут быть использованы не только при решении фундаментальных проблем, но и в целом ряде задач прикладного характера, в том числе, в медицине, биологии, материаловедении, микроэлектронике.


     Источник фото: fian-inform.ru



    С появлением компактных сверхмощных лазерных установок появилась возможность создавать сверхсильные электрические поля, способные ускорять заряженные частицы с темпом ускорения, намного превосходящим уровень, который может быть достигнут на самых передовых ускорителях, включая самую крупную экспериментальную установку в мире — Большой адронный коллайдер.

    Сотрудниками Совместной лаборатории релятивисткой лазерной плазмы под руководством главного научного сотрудника ФИАН В.Ю. Быченкова и проф. МГУ А.Б. Савельева-Трофимова был предложен ряд идей, касающихся оптимизации условий взаимодействия лазерного излучения с веществом с целью создания компактного лазерного ускорителя частиц. Была предложена схема создания компактного источника жесткого рентгеновского излучения. Энергии ускоренных электронов в этих условиях становятся релятивистскими, размеры объектов, которые облучает лазер, часто не превышают одного микрона, что фактически означает появление нового научного направления, получившего название «релятивистская наноплазмоника».

    читать дальше